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Abstract—Electroencephalography (EEG) signals are promis-
ing as alternatives to other biometrics owing to their protection
against spoofing. Previous studies have focused on capturing
individual variability by analyzing task/condition-specific EEG.
This work attempts to model biometric signatures independent
of task/condition by normalizing the associated variance. Toward
this goal, the paper extends ideas from subspace-based text-
independent speaker recognition and proposes novel modifi-
cations for modeling multi-channel EEG data. The proposed
techniques assume that biometric information is present in the
entire EEG signal and accumulate statistics across time in a
high dimensional space. These high dimensional statistics are
then projected to a lower dimensional space where the biometric
information is preserved. The lower dimensional embeddings
obtained using the proposed approach are shown to be task-
independent. The best subspace system identifies individuals with
accuracies of 86.4% and 35.9% on datasets with 30 and 920
subjects, respectively, using just nine EEG channels. The paper
also provides insights into the subspace model’s scalability to
unseen tasks and individuals during training and the number of
channels needed for subspace modeling.

Index Terms—Biometric, Task-independent, EEG, i-vector, x-
vector,

I. INTRODUCTION

Person recognition using EEG is an emerging technology.
Previous studies in EEG-based person recognition have been
constrained to a particular task or condition. Several elicitation
protocols have been proposed for EEG-based person recogni-
tion. A detailed review of these different protocols and their
performance can be found in [1–3].

Multiple factors suggest that the EEG can contain signatures
[4, 5] that help to uniquely identify individuals irrespective
of the task, condition, or state of the brain. These include
genetic differences between individuals, compounded by neu-
ral plasticity due to environmental factors and learning [6],
which help specify neuronal connections and brain activity
that are reflected in the EEG. The focus of the present work
is to identify individuals independent of the task or condition
across recording sessions. To this end, the systems proposed
in this paper build upon and extend existing state-of-the-art
text-independent speaker recognition techniques, namely, the
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i-vector system [7] and the x-vector system [8]. Preliminary
results on the proposed approaches were presented in [9], and
are encouraging. This paper provides a consolidated analysis
of these systems and shows that the proposed modifications
are better than simple early and late fusion techniques used
for modeling channel information.

For the work presented in this paper, a database was system-
atically collected with different elicitation protocols. A 128-
channel EEG system was used for this purpose. EEG data were
obtained from 30 healthy volunteers while they performed
various tasks. In addition, we also use a large clinical dataset
with 920 subjects, a subset of an openly available EEG dataset
collected in a clinical environment [10]. This clinical dataset
was recorded with clinical tasks which do not include any
standard data elicitation protocols. Using these two diverse
datasets with multiple tasks and sessions, we show evidence
for task-independent person-specific signatures in EEG.

EEG analysis requires adequate spatial sampling to capture
the functionality of the brain. Our work suggests that person-
specific information is observed in signals from all regions
of the brain suggesting that high spatial-resolution may not be
essential. Although previous works have explored different sets
of channels for task-dependent EEG biometrics, a systematic
study of the spatial resolution needed for task-independent
EEG biometrics is still lacking. Using the 128 channels EEG
dataset, this paper systematically compares various models
built with different subsets of sensor placement. Different
spatial subsampling methods are examined to find the best
set of channels necessary for person recognition.

The organization of the paper is as follows. Prior art on
EEG biometrics and our contributions are summarized in
the remainder of this section. The details of the baseline
and proposed EEG person recognition systems are given in
Section II. Section III discusses the different datasets used in
this paper. The general experimental setup and the features
used are outlined in Section IV. The experiments and results
are presented in Section V, followed by a discussion in
Section VI. Section VII concludes the paper.

A. Related Work

Multiple factors such as (i) sessions, (ii) tasks used to elicit
subject-specific signatures, (iii) number of channels used and
their location, and (iv) the choice of features and classifier
have all been shown to influence the performance of EEG
biometrics system. This section presents a review of related
work addressing the factors mentioned above.
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1) Testing across sessions: Most previous studies on EEG
biometrics have used datasets that have only a single acquisi-
tion session [11]. The exogenous conditions such as impedance
between the electrodes and the scalp, minor displacement in
electrode location, power supply artifacts, and other factors
that vary from session to session can affect both inter- and
intra-subject variability of the EEG recordings [12]. Conse-
quently, many recent studies have shown that the performance
of EEG biometrics systems is significantly affected by cross-
session testing. In [13], the EER for 60 subjects was observed
to degrade from 5.34% to 22.0%. In [14], without cross-
session testing, 100% accuracy was obtained with 40 sub-
jects, whereas while testing 15 subjects across sessions, the
performance dropped to 86.8%. Without cross-session testing,
the performance of the EEG biometric system can be heavily
influenced by session-specific conditions. Owing to this, all
results in this paper are reported only by evaluating data from
sessions unseen during training.

Table I gives a summary of previous works in the literature
that have tested EEG-based person recognition across multiple
acquisition sessions. The results in Table I show immense
potential for using EEG as a possible biometric. In [15],
even with an intersession interval of 16 months, the biometric
system is shown to work with an average accuracy of about
91.4%.

2) Tasks used for EEG biometrics: From Table I, it is
important to observe that different studies have employed
different elicitation protocols. The primary interest involved
in studying different elicitation protocols is that individuals
can have a distinctive signature for a given task, which can be
leveraged to identify them. However, in Table I, almost every
elicitation protocol has demonstrated success in EEG person
recognition across sessions. This observation suggests that
person-specific signatures are present under all task conditions,
and hence biometric systems need not be designed for a partic-
ular elicitation protocol. Consequently, EEG biometric systems
have been shown to work on multiple tasks or conditions by
training and testing on each task separately [12, 15, 26–28].
Since these systems are trained only on a specific task, they
may not scale to other protocols. Building a task-independent
EEG biometric system can eliminate the constraint of using
an elicitation protocol. Recent studies have explored the task-
independent nature of EEG biometrics using single-session
data and a small set of tasks [29–33]. This lack of cross-session
testing is stated as a significant limitation [29, 31]. Cross
session testing is important because the session-specific factors
are known to influence the EEG biometrics (Section I-A1). In
[29], the results of using different tasks for training and testing
across two sessions with <= 10 subjects on two datasets are
presented. The first dataset has a resting state and four mental
subtasks data. The second dataset has two tasks, which are
EEG captured with self and non-self images as stimuli. These
subtasks are not known to influence the EEG significantly.
This has been stated as a major limitation in [29]. In [14],
we studied task-independent nature on 15 subjects using five
different elicitation protocols but limited to the closed eye
condition. The present paper provides a detailed analysis of
the task-independent nature of biometric signatures in EEG by

using a dataset collected using 12 different elicitation protocols
with both auditory and visual stimuli.

3) Channels used for EEG biometric: In prior work, mul-
tiple techniques have been used to reduce the number of
channels needed for biometric recognition using EEG. This
subsampling is essential because increasing the number of
channels increases the computational complexity of the bio-
metric system. Some works sample the channels according to
the task, for instance, centro-parietal channels for a mental task
[16] and parietal-occipital lobe for a visual task [25]. In [21],
principal component analysis (PCA) was used to reduce the
number of channels. However, the most widely used technique
is to select a subset of channels based on performance of the
biometric system [11, 12, 22, 24, 26–28].

In [27, 28], it is shown that the performance of the elec-
trodes from the occipital lobe is better for the eyes-closed
recording owing to the alpha activity in the visual cortex.
However, for the recordings with the eyes-open condition,
the performance was similar to the frontal, central lobe. In
[17, 18], three electrodes were chosen such that they are
spatially located far from each other. The location of the
electrode also accounts for the spatial variation. The dominant
frequencies at the frontal lobe are generally lower in other
lobes such as parietal, occipital [34]. In this work, we initially
sample 9 channels from the standard 10-20 EEG system
such that they are spatially apart and cover different lobes
of the brain. This selection is justified by empirically studying
different configurations of channels in Section V-D.

4) Features and Classifiers used for EEG Biometrics:
The most commonly used features include spectral analysis
using discrete Fourier transform (DFT) [16–18, 27–29] or
continuous wavelet transform (CWT) [21] and autoregressive
(AR) coefficients [12, 19, 26, 28]. Besides, few studies have
averaged the EEG signal across multiple trials and have used
the event-related-potential (ERP) as features [11, 22, 24].
Using ERP is not feasible in task-independent EEG biometrics.
In the case of AR features, a small change in the estimated
coefficients can change the location of the roots in the z-
domain. This can affect the frequency spectrum of the EEG
signal quite significantly. The raw power spectral density
(PSD) estimated on short windows has been shown to identify
subjects across sessions in [14]. Hence, in this paper, raw
PSD estimated over short windows are used as features for
recognizing individuals.

Table I shows that longer the duration of EEG signal
used, better the performance of EEG biometrics. [26] achieved
100% accuracy on 9 individuals using 60s of EEG data. [24]
used ERP averaged across multiple trials to achieve 100%
recognition on 20 participants. The best performance obtained
for short duration of EEG, such as 5s is accuracy of 91.4% for
45 subjects in [15]. A short duration of 15s and a long duration
of 60s are both used to evaluate systems in this paper.

Most of the prior-work discussed in Table I have used
relatively simple classification/verification methods like SVM
[19], Bayes classification [29], scoring techniques like L1
distance, cosine similarity, Mahalanobis distance [11, 13, 22,
24, 27, 28] or a nearest neighbor classifier [21]. However, the
challenge involved in task-independent EEG person recogni-
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TABLE I: Literature on EEG biometrics with cross-session evaluation

Ref.
Sessions

per-person
Inter-Session

Interval
No. of

Individuals
No. of
Channels

EPs/
Tasks

Feature
Duration of
EEG segment

Classifier
Channel
Handling

Performance

[16] 3 3 days 9 8 MT PSD N.A UBM-GMM FC HTER = 36.2%

[17] 2 12 - 15 months 20 3 REC PSD based 290s (median) LR FC ACC = 88%

[18] 2 12 - 15 months 20 3 WM PSD based 189s (median) LR FC ACC = 88%

[19] 4 N.A 6 106 IS AR N.A SVM FC ACC = 78.6% to 99.8%

[20] 2 1 year 9 53 MM AR 60s MD FC ACC = 64.7% to 77.8%

[21] 2 1 week (min) 4 128 REC CWT 2s k-NN FC ACC = 92.58%

[22]
2 5 - 40 days 15

1
N400
[23]

ERP 1.1s x 100 Cross Corr.
N.A ACC = 89%

3 4 - 6 months 9 N.A ACC = 93.0%

[11] 2 9 months (avg) 20 26 VEP ERP N.A Cross Corr. Voting ACC = 100%

[24] 3 25 - 49 days 50 17 VEP ERP 600ms x 50 CS SF EER(V) = 10% to 15%

[13] 2 2 weeks 60 27 REC Multiple 20.5s Cross Corr. FC EER(V) = 22%

[25] 2 N.A 8 9 SSVEP PSD based 1s CNN FC ACC ≈ 97%

Literature on Multi-Session-Multi-Task EEG Biometrics

[26] 2 1 - 3 weeks 9 3
REC

AR 60s
Linear
Classifier

FC
ACC = 100%

REO ACC = 90.3%

[27] 2 1 month 30
19 REC PCA

based
5s

L1, L2 &
CS

FC
ACC = 87.9%

REO ACC = 75.4%

[28] 3 1 month 50 19
REC AR,

PSD
90s

L1, L2 &
CS

SF
ACC = 90.8%

REO ACC = 85.6%

[29]
2 N.A 10 18 VEP

PSD
1s

NB FC
ACC = 41.7% to 42.9%

2 N.A 5 6 MT 2s ACC = 73.5% to 82.1%

[12] 5 45 19

REC

AR

5s

HMM Voting

EER(V) = 6.6%
Min ≈ 1 week REO 5s EER(V) = 10.6%
Max ≈ 36 months MT 5s EER(V) = 10.7%

IS 5s EER(V) = 9.7%

[15] 5 45 19

REC 5s

CNNs & RNNs

ACC = 91.4%
REO 5s ACC = 81.9%

Min ≈ 1 week MI AR + 5s ACC = 86.2%
Max ≈ 16 months MT MFCC 5s ACC = 84.1%

VS 5s ACC = 81.6%
IS 5s ACC = 86.1 %

Abbreviations: EP - Elicitation Protocol, MI - Motor Imagery, REC - Resting Eye Closed, WM - Working Memory, IS - Imagined Speech, MM - Motor Movement,
VEP - Visually Evoked Potential, REC - Resting Eye Open, MT - Mental Tasks, SSVEP - Steady State Visually Evoked Potential, AR - Auto-Regressive,
PSD - Power Spectral Density, CWT - Continuous Wavelet Transform, ERP - Event-Related Potential, LR - Linear Regression, GMM - Gaussian Mixture Model,
SVM - Support Vector Machine, MD - Mahalanobis Distance, CS - Cosine Similarity, NB -Gaussian Naive Bayes Classifier, CNN - Convolutional Neural Network,
HMM - Hidden Markov Model, FC - Feature Concatenation, SF - Score Fusion, HTER - Half Total Error Rate, ACC - Accuracy
EER(V) - Equal Error Rate computed in an verification framework.

tion is minimizing the information about the task or state of the
brain and the session related information present in EEG. This
problem is similar to text-independent speaker recognition.
In speaker recognition, the primary assumption is that the
speaker information is present in the entire signal in addition
to that of phoneme and channel information. Consequently,
subspace techniques such as i-vector [7] and x-vector [8] were
proposed for speaker recognition. These models try to encode
the speaker information present in the speech signal on to
a compact vector representation. The derivation of i-vector
representation is based on an expectation-maximization based
algorithm introduced in [7] using distributional statistics of a
data model (Gaussian Mixture Model). x-vector [8] is a more
recent deep neural network (DNN) based representation that
has outperformed i-vectors in speaker recognition tasks. Both
methods assume speaker information is present in the entirety
of the speech signal and estimate various statistics across
time and project them on to a lower-dimensional space. This
paper proposes modifications to both the i-vector system and

the x-vector system to take advantage of parallel information
available across multiple EEG channels.

B. Contributions

In [9], modified versions of the i-vector and the x-vector
systems to recognize individuals using multi-channel EEG
were proposed by the authors. In [9], only preliminary results
were discussed with no inter-task or inter-subject analysis.
This manuscript presents an in-depth analysis of the subspace
systems proposed in [9] using two datasets. Dataset 1 is a
modified version of the dataset used in [9] with 30 subjects
and 12 different tasks. Dataset 1 is the primary dataset that
has been used in all the experiments. Wherever possible, we
also show our results on a large publicly available dataset with
920 subjects. The following are the primary contributions in
this paper.

• This paper builds upon subspace systems introduced in
[9] and proposes a novel system that combines the i-
vector and the x-vector representations. The proposed
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systems are shown to outperform the current state-of-
the-art deep neural networks based classifiers on both
datasets.

• This paper uses dataset 1, collected with 12 significantly
different and diverse elicitation protocols, to test the
task-independence with mismatched testing conditions.
We further categorize the tasks based on harder criteria
such as open and closed eye conditions and study the
influence on classification when training and test sets
are disjoint (eye open vs. eye closed). Testing across
sessions on a challenging set of tasks/conditions, this
paper builds evidence for task-independent individual-
specific signatures in EEG.

• In addition to testing the generalizability across tasks,
we show that, for both datasets, the subspace approach
scales to subjects unseen during training with degradation
in performance.

• Using dataset 1, collected using a 128-channel EEG
system, various channel sub-sampling techniques are
explored to achieve better performance with a task-
independent setup.

• The baseline versions of the subspace systems discussed
in this paper were designed for voice biometrics, where
a single channel is typical. In [9], these subspace sys-
tems were modified to process information from multi-
ple channels by concatenating channel-wise statistics at
an intermediate processing level. However, the channel
information can also be modeled by either early concate-
nation of features or late fusion of scores from systems
built using individual channels. This paper shows that in
the i-vector and x-vector subspace context, the proposed
modification in [9] is better than the direct early and
late fusion techniques to model the data from different
models. This result is shown on both datasets.

II. PROPOSED AND BASELINE SYSTEMS

A. Universal Background Model-Gaussian Mixture Model
(UBM-GMM)

The UBM-GMM system proposed in [35] is a precursor
to the i-vector system. A Gaussian mixture model (GMM) is
trained using data pooled from the training sessions of all the
individuals. This GMM is also called a universal background
model (UBM) as it is estimated using multiple subjects and
acts as a reference to the person-specific models. The UBM
is then converted to person-specific models by maximum-a-
posteriori (MAP) adaptation on person-specific data. While
testing, the score is calculated as the log of likelihood ratio
between the adapted person-specific model and UBM. A
detailed description of the UBM-GMM system for speaker
recognition task can be found in [35].

Both EEG and speech are essentially time series signals.
Hence many studies in EEG biometrics literature have ex-
plored UBM-GMM based techniques [14, 16, 36–38]. We use
this well-studied system as a baseline system for evaluating
subspace systems. In this implementation, for building the
UBM-GMM system, features were pooled from all the avail-
able channels. Hence, this system does not model the channels
explicitly.

B. Modified-i-vector

i-vector is a powerful speech signal representation that has
led to state-of-the-art speaker recognition systems [7] and has
demonstrated the ability to model person-specific information
in a lower-dimensional space. The i-vector space is a subspace
of the UBM space defined as follows:

M̄ = m̄+ Tw̄ (1)

where M̄ is the supervector representing an EEG segment,
m̄ is the UBM supervector, T is the total variability matrix
that defines the subspace, and w̄ is the lower dimensional i-
vector. The supervector is a vector of concatenated means from
the UBM or adapted models. Hence, the dimension of the
supervector is Kd × 1, where K is the number of Gaussian
mixtures, and d is the dimension of the input power spectral
density (PSD) feature vector. The T-matrix is of dimension
Kd × R, where R is the dimension of the subspace. R is
an empirically determined hyper-parameter of the i-vector
system.

Let,
X = { x̄cn | n = 1 to N & c = 1 to C} (2)

denote an EEG segment with C EEG sensors/channels and
N feature vectors per channel. A K mixture UBM is trained
using EEG segments from multiple subjects. Using the UBM,
the zeroth and first order statistics required for estimating
the i-vector are calculated as given in Equations 3 and 4,
respectively.

Nk(X) =

C∑
c=1

N∑
n=1

P (k|x̄cn, λ) (3)

F̄k(X) =

C∑
c=1

N∑
n=1

P (k|x̄cn, λ)(x̄cn − m̄k) (4)

where λ represents UBM parameters, k denotes the mixture
ID, and P (k|x̄cn, λ) corresponds to the posterior probability of
the k-th mixture component given the feature vector x̄cn. m̄k

is the mean of the k-th UBM component. Given the zeroth
and first-order statistics, the i-vector is estimated as follows

w̄ =
(
I + TtΣ− 1

2 N(X)T
)−1

TtΣ−1F̄ (X) (5)

where F̄ (X) is a supervector obtained by concatenation of
F̄k(X) for all k = 1...K mixtures. Hence the dimension of
supervector F̄ (X) is Kd×1. Σ is a Kd×Kd block diagonal
matrix with Σk (covariance matrix of k-th Gaussian) as blocks
along the diagonal. N(X) is also a block diagonal matrix of
dimension Kd × Kd with Nk(X)I as diagonal blocks. The
expectation-maximization (EM) algorithm for estimating T-
matrix in the case of EEG person recognition is the same as
that for speech and has been detailed in [7, 39]. This system
will be referred to as “baseline-i-vector” in the rest of the
paper. This system has been adopted for EEG biometrics in
[40, 41]. However, this standard approach is not adequate for
multi-channel EEG as it does not explicitly model channel
information. To integrate information from different channels
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in the i-vector framework, we proposed a novel way of finding
the zeroth and first-order statistics as given in Equation 6 and
7, respectively.

Nkc(X) =

N∑
n=1

P (k | x̄cn, λ) (6)

F̄kc(X) =

N∑
n=1

P (k | x̄cn, λ)(x̄cn − m̄k) (7)

In this approach, the UBM is still trained by pooling data
from all the channels. However, during statistics estimation, it
is done for each channel individually and then concatenated
before projecting to the lower dimensional i-vector space.
Hence the supervector F̄ (X) (in Eq 5) is obtained by concate-
nating F̄kc(X) for all k = 1...K Gaussian mixtures and c =
1...C channels. Hence the super vector dimension increases to
KCd×1. Consequently, the dimensions of matrices Σ, N(X),
and T (in Eq 5) increases to KCd×KCd, KCd×KCd, and
KCd×R, respectively. This system is henceforth referred to
as “modified-i-vector”. Since the dimension of the supervector
is high, for effective estimation of T-matrix, we use a smaller
number of mixtures in the UBM compared to the baseline
model (Table VI).

After estimating the i-vector, a linear transform is applied
using linear discriminant analysis (LDA). LDA makes the
subspace more discriminative for person-specific signatures
and hence improves the performance of the person recognition
system. During testing, a cosine similarity classifier discussed
in Section II-E is used on the LDA projected i-vectors.

C. Modified-x-vector

x-vector is a recent DNN based speech representation
approach aimed towards speaker recognition [8]. The x-vector
system initially operates at the frame level, estimates statistics,
and then the final few layers operate at the segment level.
This architecture is analogous to the i-vector system with
UBM acting at the frame level and the T-matrix operating
at the segment level. Similar to the “modified-i-vector” in
Section II-B, we remodel the x-vector system to handle
information from multiple EEG sensors. x-vector proposed
for speech data uses time-delay neural networks (TDNNs)
for modeling temporal context. However, upon experimenting
with EEG data, we did not find long term context information
to be helpful. Hence, 1-D convolution is used in place of
TDNN for x-vector based EEG person recognition systems
in this paper.

Figure. 1 gives an overview of the x-vector architecture
modified for multi-channel EEG. Spectrograms from all the
channels are provided as input to this model. The model has
four hidden layers. The initial two layers are single frame 1-D
convolution layers that transform every feature vector of the
spectrogram into a higher dimensional space. The third layer
is a statistics pooling layer, which estimates the mean and
variance for each channel. These statistics are concatenated
and reduced to a lower-dimensional representation using the
fourth hidden layer. The final output layer is a feed-forward

layer with softmax activation. The number of nodes in the
output layer is the total number of subjects in the training
data. Similar to [8], cross-entropy error is used to train the
network using Adam optimization [42]. After training, the
output of the fourth hidden layer is considered as a subspace
representation for the EEG segment, also referred to as x-
vector. This way of estimating x-vectors will be henceforth
referred to as “modified-x-vector” system.

T

d
Channels

1 to C

T

h1 

T

h2 

Statistics Pooling Statistics Pooling

h2 + h2 (mean + variance)

Statistics Pooling

Posterior 
Probabilities

h4 

No of Subjects

Frame
Level

Channel
Level

Segment
Level

Subspace
embeddings

Channel 2Channel 1 Channel C

Input

C   - No of Channels
d   - PSD dimension
T   - PSD frames
h1 - Size of hidden layer 1
h2 - Size of hidden layer 2
h4 - Size of hidden layer 4

Fig. 1: DNN architecture of the modified x-vector model for multi-
channel EEG.

The x-vector system with a single statistics pooling across
all channels in the third hidden layer is identical to x-vector
proposed for speech and will be used as a baseline. Similar
to the “baseline-i-vector”, this system does not take any
explicit information about the channels and will be referred
to as “baseline-x-vector” system. Testing is performed using a
simple cosine similarity classifier after subjecting the x-vectors
to LDA, as discussed in Section II-E.

D. Combined i-vector and x-vector (ix-vector)

In this section, we propose a novel subspace system that
uses both the E-M based modified-i-vector (Section II-B)
and the DNN based modified-x-vector (Section II-C) to rec-
ognize individuals from EEG signal. i-vectors are subspace
embeddings obtained by aligning statistics from a universal
background model (UBM) and a large projection (total vari-
ability space or T) matrix. Both UBM and the T-matrix are
generatively modeled using E-M. On the other hand, x-vectors
are extracted from a DNN trained discriminatively. By con-
catenating embeddings from modified-i-vector and modified-
x-vector, we show that the performance of the individual
systems can be significantly improved. This concatenated
embeddings system will be henceforth referred to as the “ix-
vector” system. Section II-E details the back-end used to
recognize the individuals given the concatenated embeddings.

E. Back-end

After estimating the subspace embeddings (Section II-B,
II-C, and II-D), any classifier can be used for implementing
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person recognition. Since the focus of this paper is on the
subspace technique, we use a simple cosine similarity based
recognition system as the back-end.

Let w̄i be the subspace vector obtained by projecting all
the available training data of person i and w̄test be the sub-
space vector under test. The cosine similarity score for w̄test
belonging to a person i is calculated as given in Equation 8.

Si =
w̄Ti w̄test

‖w̄i‖ ‖w̄test‖
(8)

F. Other baseline systems

This section briefly describes the two start-of-the-art DNN
based EEG biometrics systems used to compare with our
results. The first system is a convolution neural network
(CNN) based technique [43], proposed using multiple CNNs to
extract EEG features for BCI applications automatically. This
system has also been used for biometric recognition in [15].
Henceforth, this system will be referred to as the “EEGNet”
system (similar to [15, 43]). The second system is CNN-RNN
based system proposed in [15], which uses CNNs to convolve
across channels and recurrent neural networks (RNNs) or long
short-term memory (LSTMs) to convolve across time. This
system will be henceforth referred to as the “CNN-RNN”
system.

For the EEGNet system, we have used the implementation
provided by the authors (publicly available). The EEGNet
system proposed in [43] uses raw EEG signals (time-domain
representation) as input. To enable fair comparison with pro-
posed models, we also show the result for an EEGNet variant
that uses a spectrogram or time-frequency representation from
each channel as input. For both the EEGNet based systems,
filter sizes were fixed at half the sampling rate of giving input
(as recommended in [43]), and the number of filters in each
layer was fine-tuned. The CNN-RNN system was implemented
by the authors similar to the system Sζ in [15]. The filter sizes
were kept numerically identical to the model implemented in
[15], and the number of filters was fine-tuned.

III. DATASETS

A. Dataset 1: 128-Channel Multi-Task EEG Dataset

This dataset was collected from 30 subjects performing mul-
tiple tasks. Multiple tasks/elicitation protocols were designed
with both open and closed eye conditions to collect this data.
Table II gives a summary of these tasks and protocols. It is
to be noted that all the 30 subjects did not perform all the
12 tasks mentioned in Table II. EEG data was collected from
each subject, for at least 2 sessions and at most 5 sessions.
During each session, at most of 4 tasks from Table II were
performed. This dataset is a modified version of the dataset
presented in [9].

This dataset was collected by the authors in a laboratory
setting using a 128-channel dense-array EEG system manu-
factured by Electrical Geodesics, Inc (EGI) [44]. The Ethics
Committee of the Indian Institute of Technology Madras ap-
proved this study. All the subjects were informed about the aim
and scope of the experiment, and written consent was obtained

to collect the data. The EEG data were recorded at a sampling
rate of 250Hz with the central electrode Cz as the reference
electrode. After collecting the dataset, the artifacts present
were removed using [45], and bad channels were replaced
by spherical spline interpolation [46] (plugins available with
EEG lab toolbox [47]). The total duration of this dataset is
about 31 hours, with 3 sessions per person on average. Further
statistics on number of sessions per individual, number of
EEG segments and intersession intervals between train and test
are given in Table III. This dataset has been made publicly
available at https://www.iitm.ac.in/donlab/cbr/eeg person id
dataset/.

B. Dataset 2: Temple University Clinical EEG Dataset
This dataset is a subset of the Temple University hospital

EEG data corpus (TUH-EEG) [10]. In this paper we have used
the TUH-EEG corpus v.1.1.0 containing over 20, 000 clinical
EEG recordings collected from about 14, 000 patients. We
preprocess this dataset for evaluating the proposed systems,
as described below.

The dataset has data from 7424 patients with average
EEG as reference and 6770 patients with linked-ears data
as reference. Out of this, only 2152 and 1341 patients have
multi-session data collected using average and linked-ears
as reference, respectively. [10] presents an analysis of the
demographics of the patients. Further for each recording
the dataset also has an unstructured clinical report in plain
text format. Since abnormal pathological conditions such
as seizures can affect subject recognition performance, the
recordings that were annotated to have abnormal EEG were
first removed. It is to be noted that these annotations for
abnormal EEG came along with the original dataset and has
been algorithmically generated using [48, 49]. After removing
the abnormal recordings, the dataset contained 1033 and 155
patients with at least two-sessions with average and linked-
ears reference, respectively. For further analysis, only the 1033
subjects recorded with average reference were chosen owing
to the higher number of subjects. To improve the signal-to-
noise-ratio, we adopted the methods in [45] for removal of
artifacts and bad-channels (channels with flat or noisy data).
In this process, if one of the nine channels considered in
our experimental setup (Section IV) turns out to be affected,
the corresponding EEG recording was discarded. After these
preprocessing steps, the number of subjects with at least two
sessions reduced to 920 subjects with 2889 recording sessions.
Further detailed statistics on number of sessions per individual,
number of EEG segments and intersession intervals between
train and test are given in Table III.

Clinical tasks such as hyperventilation, photic simulations,
and sleep and wakefulness EEG were used to collect this data.
Since these data were collected for clinical purposes, the elic-
itation protocol has not been standardized across acquisitions.
Also, the dataset does not have any annotations regarding the
tasks performed. The set of tasks and the clinical setting makes
this dataset distinct from dataset 1. Given the clinical nature,
this dataset is used only to show the scalability of proposed
approaches over the baseline on a diverse dataset with a large
number of subjects.

https://www.iitm.ac.in/donlab/cbr/eeg_person_id_dataset/
https://www.iitm.ac.in/donlab/cbr/eeg_person_id_dataset/
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TABLE II: Data collection protocols for dataset 1.

S. No.
Experiment

Brief Description of Experiment
No. of Total Duration

Name Participants (in Minutes)
Experiments conducted with Closed Eye Condition

1 Odd Ball Classic Participants were presented with frequent non-target stimuli and infrequent target stimuli. The target and
non-target stimuli consist audio beeps differing in frequency or duration.

13 5 hr 2 mins

2 Odd Ball Stereo Similar to S.No 1. The target and non-target stimuli consist of audio beeps played in left and right ear. 12 1 hr 55 mins

3 Imagining Binary
Answers

A set of binary questions were presented to participants. They were asked to first imagine the answer
and then respond with a mouse click.

7 3 hr 21 mins

4 Semantically Opposite
Words

Semantically opposite words such as “yes” and “no” were played to the subject over multiple trials.
Subject was instructed to respond with left and right mouse clicks depending on the semantics of the
word being played

4 1 hr 36 mins

5 Familiar and Unfamiliar
Words

The subjects were presented with common words and uncommon words. They were expected to respond
with a mouse click on hearing a familiar word.

6 1 hr 50 mins

6 Proper and Improper
Sentences

Regular and ill-formed sentences were played to subject. The subject was required to respond with mouse
click on hearing ill-formed sentences.

8 1 hr 52 mins

7 Motor and Mental
Imaginary

Participants were asked to imagine motor-movements such as left and right fist rotation. For mental
imaginary task, they were asked to count numbers in reverse.

6 3 hr 13 mins

8 Passive Audio Participants were passively listening to a variety of audio stimuli such as music, sentences, stories, and
sounds that trigger attention (for example sound of sirens).

17 3 hr 33 mins

9 Passive Audio Stereo Similar to S.No. 7. The auditory stimuli were always played through only one ear (either left/right) at
time using headphones.

11 2 hr 46 mins

Experiments conducted with Open Eye Condition
10 Odd Ball Visual Similar to S.No 1. The target and non-target stimuli consist of visual objects varying in shape and color. 6 33 mins

11 Steady State Visually
Evoked Potential

Visual objects flickering at different frequencies were displayed to participants. At the end of each trial,
a question about the shape or color of the object was asked.

12 3 hr 13 mins

12 Passive Audio-Visual Audio-visual clips were played to the participants. At the end of each clip, a question was asked based
on the stimuli.

12 3 hr 2 mins

Total number of subjects: 30 Total number of subjects with closed eye recordings: 30
Total duration of the dataset: 31 hours Total Number of subjects with open eye recordings : 14

Total number of subjects with both open and closed eye recordings on all sessions: 10

TABLE III: Statistics of datasets used

Dataset

Number of sessions
Time between training and last testing session Number of 15 sec trials

per subject

Avg Std Min Max Avg Std Min Max Train Validation Test

1 (30 subjects) 3.1 0.8 2 5 44 Days 67 Days 1 Day 193 Days 4681 559 2255
2 (920 subjects) 3.14 1.65 2 19 10 Months 15 Months 0 Days 126 Months 225153 42171 133678

IV. GENERAL EXPERIMENTAL SETUP

A. Channels

Dataset 1 was collected using a 128-channel EEG system,
whereas dataset 2 was variedly collected using 24 to 36
sensors. We initially choose 9 electrodes, namely, Fz, F7,
F8, C3, C4, P7, P8, O1, and O2 of the standard 10-20
system to make a common analysis on both datasets. Later,
in Section V-D, we analyze the effect of different sets and
number of sensors for the proposed models. A diagrammatic
representation of these initially chosen 9 channels with all the
128 channels as the background is shown in Figure 2. These
9 electrodes were chosen from the standard 10-20 system
such that they cover different regions of the brain, namely,
the Frontal, Central, Parietal, and Occipital lobe. This kind of
selection covering the entire scalp is essential because different
stimuli/tasks elicit different regions of the brain (Section V-D).

B. Features

Power spectral density (PSD) spectrogram is used as the
feature. PSD spectrograms are computed in the range of 3-30
Hz for every channel with a window size of 360 ms and no
overlap. This configuration of PSD features for EEG person
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Fig. 2: Diagrammatic representation of 128-channel EEG system.
The electrodes with a red outline are the 9 channels considered for
person identification. The sensors in the background denote all the
128-channel used to collect dataset 1.

recognition was fine-tuned using the UBM-GMM system in
[9, 14].
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C. Setup for task-independent person recognition

In dataset 1, the EEG signals obtained from various ex-
periments (given in Table. II) are divided into segments of
15s length. This segmentation is done irrespective of the
experimental protocol such as whether the person is in the
resting state or watching/listening to a stimulus/instruction or
doing a specific task. Hence, recognizing individuals from
these segments are task independent. We use the same uniform
segmentation for dataset 2, which was collected for clinical
purposes, unlike in a laboratory with formal control of data
collection conditions.

For every individual, the first 60% of the sessions (rounded
off to nearest integer) are chosen for training. Of the remaining
data, 20% is used for validation, and the rest is used for testing.
For biometric applications, the training data is always collected
before the test data. Therefore, the initial few sessions are
chosen for training and the remaining for test and valida-
tion. Since we divide sessions chronologically, n-fold cross-
validation was not performed to analyze the results. Besides,
[9] shows preliminary cross-validation results by randomly
dividing sessions for training and testing. It is to be noted
that all the results reported in this paper are only on test
sessions that are not used during training. Table III presents
the statistics on the time interval between sessions and the
number of EEG segments used for training and testing.

D. Evaluation

The systems are evaluated using two evaluation metrics:
rank-1 classification accuracy and equal error rate (EER). In
this paper, rank-1 classification accuracy is used to evaluate
the proposed systems in a closed-set identification framework,
and EER is used for the same in a closed-set verification
framework. For computing classification accuracy, only the
maximum score from each EEG segment is used to decide
the final class label. For calculating EER, the correct label of
a given EEG segment is considered a target, and all the other
individuals present in the dataset are considered non-targets. A
threshold over all possible scores is used to determine the EER
such that the true positive and false positive rates are the same.
Since the subspace models proposed in this paper employ data
from all the individuals, the EER computed can only represent
a closed-set verification system. It is to be noted that EER
computed in a closed-set verification framework cannot be
directly compared to papers (in Table I) reporting EER using
models that do not use other users’ data, mimicking an open-
set verification framework [12, 13, 24]. All results in this paper
use EER as a metric in addition to rank-1 accuracy because
EER is computed using all the score values given the test EEG
dataset. Only in case 2 of Table X, we report EER similar to
[12, 13, 24], where we explore the possible extension of the
proposed models to an open-set verification framework.

V. EXPERIMENTS AND RESULTS

A. Performance of proposed systems vs. the baseline systems

Results of all the baseline and modified systems discussed
in Section II are compared in Table IV for both datasets 1

and 2. All systems were developed following the common
experimental setup given in Section IV. Only the EEGNet
system was developed using raw time-domain signals. All
the other systems used PSD features (Section IV-B). For
all the systems, the associated hyper-parameters were fine-
tuned using validation data. These fine-tuned layer-wise hidden
features used in DNN based systems are given in Table V.
Similarly, the number of UBM mixtures and the i-vector
dimensions are given in Table VI for UBM based models.

TABLE IV: Performance comparison of various system using Accu-
racy (%) and EER (%)

Systems
Dataset 1

(30 Subjects)
Dataset 2

(920 Subjects)
Acc EER Acc EER

UBM-GMM 71.2 10.9 6.02 44.0

baseline-i-vector 70.5 10.6 9.02 26.8

baseline-x-vector 67.1 11.3 5.42 29.0

EEGNet [43] 70.1 9.2 24.0 15.0

EEGNet (PSD) 77.5 5.79 23.9 15.3

CNN-RNN [15] 77.8 6.24 35.0 12.8

modified-i-vector 85.1 5.81 30.0 16.5

modified-x-vector 76.8 8.16 27.2 16.6

ix-vector 86.4 5.02 35.9 14.2

TABLE V: Layer-wise configuration used in DNN based models. (a
- Layer type, b - Number of layer wise feature used for dataset 1 and
c - Number of layer wise feature used for dataset 2)

System Name Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Output

baseline-
x-vector

(a) Conv Conv FF - - - FF
(b) 1024 1024 160 - - - 30

(c) 1024 128 160 - - - 920

modified-
x-vector

(a) Conv Conv FF - - - FF
(b) 1024 512 160 - - - 30

(c) 512 128 160 - - - 920

EEGNet [43]
(a) Conv Conv Conv - - - FF
(b) 64 128 128 - - - 30

(c) 512 1024 1024 - - - 920

EEGNet
(PSD)

(a) Conv Conv Conv - - - FF
(b) 64 128 128 - - - 30

(c) 256 512 512 - - - 920

CNN-RNN [15]
(a) Conv Conv Conv Conv Conv Bi-LSTM FF
(b) 32 64 128 256 512 1024 30

(c) 64 128 256 512 1024 2048 920

Conv - convolution layer, FF - feed-forward layer, Bi-LSTM - bidirectional long short term memory.

For dataset 1, the ix-vector system gives the best perfor-
mance, followed by the modified-i-vector system. For dataset
2, the ix-vector system gave the best accuracy, followed by
the CNN-RNN based approach. However, in terms of EER,
for dataset 2, CNN-RNN system has performed better. We
highlight that the proposed E-M based modified-i-vector gives
comparable results to DNN based techniques even on a dataset

TABLE VI: Number of UBM mixtures and the i-vector dimensions
for UBM based models

System
Dataset 1 Dataset 2
UBM
mixtures

i-vector
dim

UBM
mixtures

i-vector
dim

UBM-GMM 128 - 128 -

baseline-i-vector 64 160 64 160

modified-i-vector 7 160 8 160
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with 920 subjects. Further, the ix-vector system that com-
bines embeddings from the modified-i-vector and modified-
x-vector system, significantly improves upon the performance
over individual systems. This result shows that the combined
representation system is able to generalize better for test data.
For both datasets, the proposed systems achieve state-of-the-
art performances with accuracy as the evaluation metric.

For dataset 2, the best-obtained accuracy is only 35.9%.
We found that EEG recordings from many sessions in dataset
2 were still noisy and abnormal on manual observation.
However, we highlight that this is the highest number of
subjects used for studying EEG biometrics (see Section VI-D).

The proposed subspace systems extract embeddings from
multi-channel EEG, which can then be used for recognizing
individuals. In Section V-B and V-C, we explore the ability
of these embeddings to scale for unseen tasks and individuals
during training.

The embeddings from the proposed systems can be obtained
for EEG segments of any length irrespective of the segments
size used for training. In Table VII, we further evaluate
the proposed models by re-dividing the test data into EEG
segments of duration 30s and 60s, in addition to 15s. It can
be observed that, for all the proposed models, the accuracy
increases as the duration of EEG segments increases. This
shows that the effectiveness of the generated embeddings
increases with the duration of the EEG segment.

TABLE VII: Performances of the proposed system for different
lengths of EEG segments.

Systems
Accuracy (%) EER(%)

15s 30s 60s 15s 30s 60s

Dataset 1
modified-i-vector 85.1 90.1 93.0 5.81 4.32 2.84

modified-x-vector 76.8 82.2 84.0 8.16 6.31 5.84

ix-vector 86.4 90.8 93.39 5.02 3.59 2.59

Dataset 2
modified-i-vector 30.0 37.7 42.8 16.5 14.5 13.3

modified-x-vector 27.2 32.8 36.4 16.6 15.0 14.0

ix-vector 35.9 42.9 47.0 14.2 12.6 11.7

B. Evidence of task-independent person-specific signatures in
EEG using proposed subspace systems

In this experiment, the task-independent nature of the EEG
biometric-signatures are tested in two steps as given below:

1) The subspace embeddings are tested for their ability to
normalize the variance across tasks seen during subspace
training.

2) The same is tested for tasks unseen during training.
First, the subspace systems (modified-i-vector, modified-x-

vector, and ix-vector) trained in Section V-A using all the tasks
(Table II) is used. Keeping EEG data of a particular task in
Table II for testing, the reference subspace vector is computed
using other tasks performed on different sessions. Hence this
experiment tests the task-independent nature of the vector
embedding for a known task during subspace training. Later,
the subspaces (modified-i-vector, modified-x-vector, and ix-
vector) are trained again by leaving out a task from Table II
and using them only for testing. The results of both these

studies of testing left-out tasks are given in Table VIII using
EEG segments of 15s for evaluation.

TABLE VIII: Accuracy (%) and EER (%) of tasks left-out for testing
only. (System 1 : modified-i-vector; System 2 : modified-x-vector;
System 3 : ix-vector)

Left-out task for test
No. of
Subjects

System

Subspace
trained with

all tasks
(Case-1)

Subspace
trained without

test task
(Case-2)

ACC EER ACC EER

Odd Ball Classic 13

1 97.0 2.58 91.8 5.79

2 89.1 3.93 83.0 6.97

3 96.6 1.71 94.5 4.07

Odd Ball Stereo 12

1 90.7 4.85 87.6 6.29

2 94.6 2.69 85.3 7.24

3 96.9 2.81 95.3 5.72

Imagining
Binary Answers

7

1 96.9 2.93 94.0 5.51

2 99.1 1.62 84.1 12.7

3 99.3 1.39 96.4 5.36

Semantically
Opposite Words

4

1 97.1 4.33 88.8 12.9

2 95.1 6.64 82.1 17.1

3 99.5 0.91 88.4 11.3

Familiar and
Unfamiliar Words

6

1 97.1 1.92 96.7 4.36

2 100 0.54 95.1 4.48

3 100 0.38 98.3 2.38

Proper and
Improper Sentences

8

1 98.4 2.70 97.4 2.68

2 100 0 95.9 2.53

3 100 0.06 98.4 1.95

Motor and Mental
Imaginary

6

1 98.0 2.04 96.5 4.57

2 98.0 2.9 95.3 5.56

3 100 1.44 96.92 3.77

Passive Audio 17

1 82.5 7.42 77.4 11.7

2 87.6 5.26 71.5 7.06

3 88.4 4.96 80.4 7.90

Passive Audio
Stereo

11

1 89.8 5.13 91.0 4.94

2 89.3 2.69 89.8 3.98

3 89.8 3.06 94.3 3.90

Odd Ball Visual 6

1 78.7 13.7 83.8 10.5

2 77.7 9.39 76.7 12.8

3 79.7 10.6 80.0 11.7

Steady State Visually
Evoked Potential

12

1 80.1 9.06 69.3 16.4

2 70.2 11.4 56.7 17.4

3 80.6 9.19 63.9 15.8

Passive Audio-Visual 12

1 87.3 7.45 78.2 10.5

2 72.3 14.7 57.1 21.0

3 87.8 7.9 81.9 11.5

From Table VIII, it can be seen that the results are slightly
different for different tasks. However, for all tasks, the results
are significantly high (accuracy ≈≥ 78% and EER ≈≤ 10%
for modified-i-vector and ix-vector systems). This result was
obtained with a simple cosine similarity classifier using refer-
ence vectors that used no EEG data from the task and session
under test. The results of this experiment show that, when
trained with all tasks, the proposed approach can account for
task and session related variance in the EEG data. When the
task under test is also excluded from subspace training, the
performance reduces slightly for most of the tasks. However,
the results are still promising, showing that the proposed
approach can extract person-specific signatures even for tasks
and sessions not seen during training.

To further test the task-independence of proposed systems,
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the tasks in Table II were combined into data collected with
the open and closed-eye conditions. It is well-known that the
activation and inactivation of the visual cortex by open/closed
eye conditions have a significant impact on the brain activation
patterns [50]. Using EEG, the open/closed eye state can be
classified with ≈97% accuracy [51]. We again repeat the
previous experiment but only using two conditions (the open
and closed-eye conditions) rather than all tasks from Table II.
Out of all the 30 subjects from dataset 1 only 10 subjects have
recordings with both open and closed-eye conditions during all
the sessions. Only the data from those 10 subjects are used in
this experiment. First, we use the subspace trained using all
the tasks from Section V-A and extract the reference vector
without using the data from the condition used for testing.
Later, we repeat the experiment using a subspace that was
trained without the condition reserved for testing. The result
of these experiments across the open and closed-eye conditions
are given in Table IX using EEG segments of 15s for all the
evaluation.

TABLE IX: Accuracy (%) and EER (%) of open/closed eye condition
left-out for testing only. (System 1 : modified-i-vector; System 2 :
modified-x-vector; System 3 : ix-vector)

Left-out condition for test
No. of
Subjects

System

Subspace
trained with

all tasks
(case-1)

Subspace
trained without
test condition

(case-2)
Acc EER ACC EER

Closed Eye Condition 10

1 82.6 7.50 35.8 29.8

2 86.8 4.18 39.3 32.4

3 88.3 4.34 37.0 29.9

Open Eye Condition 10

1 85.7 7.59 67.2 14.84

2 80.0 7.47 52.3 19.3

3 86.6 6.02 60.4 13.3

The results in Table IX, show that even when the subspace
representation obtained from the open/closed-eye condition is
tested against the reference vector formed using the opposite
condition, the simple cosine similarity measure is able to
recognize the individuals with an EER less than ≈ 7%. This
suggests that the proposed subspace techniques have the ability
to model the variations across major changes in the underlying
circuit, such as activation and inactivation of the vision system.
In Table IX, when the subspace is trained without the test
condition, the performance degrades. Especially when eye
closed condition is retained only for test, the EER reduces
to ≈ 35%. Although this result is significantly higher than
chance, it clearly shows that the proposed subspace may not
scale if the underlying circuit generating the EEG changes
significantly. Further, the results also show that, if the same
variability in tasks are seen in the training data, the proposed
approach is able to extract task-independent features.

C. The subspace systems generalize to unseen subjects

Training of the entire subspace for every new user to be
enrolled in a biometric system can be a tedious task. When
trained using many subjects, the subspace should represent
biometric signatures independent of specific individuals used
during training. This hypothesis is well-established in the

speaker recognition literature. The speakers used for evaluation
are seldom used during subspace training. Taking this idea
forward, we test the subspace system performance for subjects
not seen during training.

A random 20% of the subjects from both datasets 1 and
2 were selected for evaluation in this experiment. The per-
formance for this 20% of the random subjects is shown under
two cases. In Case 1, all the subjects are used for training, and
evaluation is done only on the selected 20% subjects. In Case
2, we retain the selected 20% of the subjects for only testing
and repeat the entire subspace training procedure using only
the remaining 80% of the subjects. The results for Case 1 and 2
are compared in Table X for both datasets using EEG segments
of 15 seconds. It can be observed that the results degrade
when the subjects are not included in the training pipeline.
However, with dataset 2, this degradation in performance is
smaller compared to dataset 1.

TABLE X: Accuracy (%) and EER (%) when subspace is trained
with all subjects including the subjects under test (Case 1) vs when
the subspace is trained without the subjects under test (Case 2).

Case 1 Case 2
ACC EER ACC EER

D
ataset

1

Modified-
i-vector

Split-1 92.3 6.85 70.3 14.9

Split-2 95.4 4.97 90.3 13.6

Split-3 89.4 10.3 80.5 14.5

Avg 92.4 7.37 80.4 14.3

Modified-
x-vector

Split-1 92.3 4.87 64.3 19.4

Split-2 88.1 8.72 63.75 22.8

Split-3 91.1 6.91 88.9 11.5

Avg 90.8 6.83 72.3 17.9

ix-vector

Split-1 95.2 3.96 76.7 13.3

Split-2 98.1 3.84 81.6 16.1

Split-3 95.9 4.42 92.4 7.83

Avg 96.4 4.08 83.6 12.4

D
ataset

2

Modified-
i-vector

Split-1 42.4 14.2 35.8 16.1

Split-2 42.4 14.2 35.8 16.1

Split-3 36.9 17.7 34.3 18.7

Avg 40.5 15.3 35.3 17.0

Modified-
x-vector

Split-1 40.3 16.2 22.5 23.5

Split-2 36.4 18.2 24.1 23.6

Split-3 36.6 17.6 33.3 19.3

Avg 37.7 17.3 26.7 22.1

ix-vector

Split-1 43.0 14.8 41.1 15.3

Split-2 49.4 12.6 37.3 15.3

Split-3 44.3 15.3 37.7 17.3

Avg 45.6 14.2 38.7 16.0

D. Channels needed for effective estimation on the subspace
signatures

All the results reported in other sections of this paper have
used only the 9 channels mentioned in Section IV. This section
empirically explores various spatial subsampling methods to
analyze the set of channels that perform better for task-
independent EEG person recognition. All results in this section
using only dataset 1 with 30 subjects and 128 EEG channels.

Given a particular number of sensors, we first explore
different possible ways to sample them from the available 128
channels. Accordingly, in Figure 3, nine channels are sampled
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locally from different regions of the brain, namely, Frontal,
Central, Parietal, Temporal, and Occipital lobes. In addition,
three combinations of sensors are chosen such that they cover
all the regions equally. The ix-vector and modified-i-vector
systems were observed to recognize subjects with much better
EERs when sensors are sampled from all the regions rather
than locally from a particular region. However, among the
different areas of the brain, the Central region is observed
to give better recognition, followed by the Parietal region.
Nevertheless, by showing consistently good EERs for three
different selections, Figure 3 shows that sampling sensors from
across the entire scalp yield a better result for task-independent
person recognition.

In Figure 4, we analyze the number of channels required for
EEG biometrics using channel subsets of different sizes from
the available 128 sensors. The sensors for systems with 16,
32, and 64 channels are sampled by incrementing the channel
numbers (given in Figure 2) by 8, 4, and 2, respectively.
This selection ensured that the entire scalp was covered. The
EER of the systems using a larger number of sensors are
compared with the 9 channel systems used in other sections
of this paper. The results for the proposed systems with
channels ≥ 64 are not shown because higher the number of
channels, greater the data needed to train the system owing
to the concatenation of statistics across channels (Section II).
In Figure 4, observe that the modified-i-vector system using
just 9 channels achieves an EER of 5.81%. Whereas, using
all the 128 channels, the baseline-i-vector system achieves a
performance of 11% EER. These results suggest that not all
channels are required for subject identification. Nevertheless,
it is important to ensure that the sensors are spatially apart
and cover the entire scalp. Further, using 32 channels, the
performance of the ix-vector and modified-i-vector systems
are observed to increase gracefully.

To study the performance of systems with fewer than 9
EEG sensors, we also analyze systems with 6 and 4 channels
in Figure 4. While selecting sensors for the 6 and 4 channel
system, higher importance was given to Central and Parietal
regions as they were observed to provide better recognition in
Figure 3. It is interesting that the system with just 4 channels is
found to give slightly better recognition than baseline systems
using all the 128 channels. Adding more channels need more
data to train the systems. Further, as more channels are added,
this improvement in performance degrades gradually. This is
a significant result as it indicates that additional channels only
lead to redundant information and increased dimensionality
requiring more training data.

E. Proposed modifications for the i-vector and the x-vector
systems vs. naive early and late fusion techniques on baseline
models

In Section V-A, it was observed that explicit modeling of
the EEG sensors by the proposed approaches gave a signifi-
cant improvement in performance over the baseline versions
adopted from speaker recognition. In the literature of EEG
biometrics, information from multiple channels is handled by
either concatenating the input feature vector or by performing

voting/score fusion on channel-specific models (Table I). In
this section, we explicitly model the EEG channels in baseline
versions of the i-vector and the x-vector system by feature
concatenation and score fusion. Table XI compares perfor-
mance of proposed i-vector systems with the early and late
fusion versions. Table XII presents a similar comparison for x-
vector based systems. Similar to Section V-A, the experimental
setup detailed in Section IV was followed and the hyper-
parameters for all systems were fine-tuned using validation
data.

TABLE XI: Performance comparison of different ways of modeling
EEG channels in i-vector framework

Systems
Channel

Information
Accuracy EER

15s 60s 15s 60s

Dataset 1

baseline-
i-vector

- 70.5 84.5 10.6 6.51

Concatenation 79.5 86.4 7.41 4.74

Score-Fusion 62.7 67.1 15.2 13.6

modified-
i-vector

Statistics
Concatenation

85.1 93.0 5.81 2.84

Dataset 2

baseline-
i-vector

- 9.02 16.4 26.8 22.2

Concatenation 27.0 38.2 16.6 14.1

Score-Fusion 13.6 19.4 20.6 17.6

modified-
i-vector

Statistics
Concatenation

30.0 42.8 16.5 13.3

TABLE XII: Performance comparison of different ways of modeling
EEG channels in x-vector framework

Systems
Channel

Information
Accuracy EER

15s 60s 15s 60s

Dataset 1

baseline-
x-vector

- 67.1 74.7 11.3 8.53

Concatenation 61.2 68.0 12.7 11.4

Score-Fusion 73.7 80.5 10.8 9.26

modified-
x-vector

Statistics
Concatenation

76.8 84.0 8.16 5.84

Dataset 2

baseline-
x-vector

- 3.64 5.01 32.8 29.7

Concatenation 9.036 11.8 27.9 24.5

Score-Fusion 9.56 13.7 27.2 24.3

modified-
x-vector

Statistics
Concatenation

27.2 36.4 16.6 14.0

From Tables XI and XII, it can be seen that modified
versions of the i-vector and the x-vector systems have out-
performed the baseline versions that use explicit channel
information through early concatenation or late fusion. In the
case of i-vector, feature concatenation gives a better result
than score fusion. Owing to discriminative training, the x-
vector systems trained on individual channels are better than
i-vector trained on a single channel. Hence the x-vector model
gives a better score fusion result compared to the baseline
and concatenated approach. However, for both the x-vector
and i-vector system, the proposed method is observed to give
the best performance by concatenating statistics from various
channels at an intermediate level of processing.
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Fig. 3: Performance of sensors sampled from different regions of the brain. The channel map below highlights the sensors selected for each
case. The sensor with larger radius represents the 9 primary channels used in all the other experiments.
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VI. DISCUSSION

A. Task-independent EEG biometrics

The person-specific signatures in EEG were tested for task-
independence in Section V-B using mismatched tasks for train
and test. First, the task-independence was tested with subspace
trained using all the data and with a mismatched task/condition
for the cosine similarity back-end. Later, the subspace system
was also retrained without using the task/condition reserved for
the test. For both these cases, in Tables VIII and IX, all the re-
sults are significantly above chance accuracy. This result shows
that biometric information is present in EEG irrespective of
the task and condition. From Tables VIII and IX, it is also
evident that the subspace model generalizes better when the
task/condition under test is also used for training the subspace.

In Table IX, the worst performance of EER ≈ 30% was
obtained when the subspace was trained using the closed eye
condition and tested on the open eye condition. To further
analyze this, the embeddings of the modified-i-vector system
were projected to a two-dimensional space using t-distributed
stochastic neighbor embedding (t-SNE) [52]. t-SNE is a non-
linear dimension reduction technique such that it preserves the

distance between the two points in the original space. t-SNE
is applied to reduce the EEG signatures in the i-vector space
to a visualizable 2D space. In Figure 5, the t-SNE plots were
made for all four conditions given in Table IX.

In Figure 5. A and B, it can be seen that when the subspace
is trained with all the data, the EEG segments from different
conditions and sessions are located close to each other. The
symbol “+” denotes the training condition from which the
reference vector is formed, and “o” indicates the test condition.
In Figure 5. A and B, subject 6 highlighted by a black circle,
has two distinct clusters made of data from the train (“+”) and
test (“o”) conditions close to each other. This shows the ability
of the subspace to normalize the variance related to tasks and
sessions. In Figure 5. C and D, the distance between train
and test clusters increases when data from test conditions are
not used to train the subspace. It is well known that alpha
oscillations are present in the occipital lobe when the eyes are
closed. The subspace trained only using open eye condition
is unaware of the dominant alpha oscillations in closed eye
condition. These alpha oscillations could be one of the reasons
for poor task normalization in Figure 5. D (subject 6, for
example). Hence, the subspace model cannot be expected to
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Fig. 5: 2-D visualization of modified-i-vector subspace for mismatched train and test conditions given in Table IX. All the training data are
used to form a single reference vector for cosine similarity testing.

scale for a significant change in the underlying EEG (such
as alpha waves during closed eye or change in EEG due to
a brain injury). However, when these conditions are included
while training the subspace, the model is able to generalise
even across such conditions.

B. Significance of the subspace systems
The most important observation from Section V-A is that the

proposed approaches, namely, modified-i-vector and modified-
x-vector system, give a significant improvement in perfor-
mance over the baseline systems. Both the baseline-i-vector
and the baseline-x-vector systems (Section II) assume that
the biometric information is present in the entire EEG signal.
Hence these systems do not perform any sequence modeling.
These subspace systems accumulate statistics across time
in a higher dimension space and then project to a lower-
dimensional space such that the biometric information is
preserved. The UBM-GMM system and baseline versions of
the subspace systems do not model the data from different
sensors explicitly.

The proposed modification suggests the pooling of data to
create a common high-dimensional space for all channels. In
the high-dimensional space, various statistics are estimated
across time for each channel. These statistics are then con-
catenated across channels and reduced to a single vector in
a subspace that enhances person-specific information. When
this channel information is explicitly modeled by the modified
version of the i-vector and the x-vector frameworks, a signifi-
cant improvement in performance is observed in the respective
systems. This observation is consistent with both accuracy
and EER in Table IV. This improvement in the performance
of the proposed subspace systems over the baseline systems
demonstrates that the former can better model the person-
specific signatures from the EEG signal independent of tasks.

Sections V-B and V-C tested the modified-i-vector and
the modified-x-vector subspaces with tasks/conditions and
subjects that were not used to train the subspace, respectively.
The results presented in these experiments lead to interesting
future works (See Section VI-F). In addition to this, in the
supplementary material (Section S1), we show preliminary
results on longitudinal testing using the proposed models.

The proposed approach has a drawback that the same set
of channels should be present during training and testing as

compared to the baseline subspace systems. In addition, owing
to the concatenation of statistics, these models require more
data when the number of channels is increased. Nevertheless,
Section V-D shows that the modified-i-vector system with just
4 channels outperforms the baseline-i-vector model using all
the 128 channels. This result is significant because using a
larger number of channels is not feasible for building real-
time biometric systems using EEG. In addition, we also show
empirically that sampling electrodes from across the entire
scalp gives a better EER than choosing the sensors locally
from a particular region of the brain. In this regard, in the
supplementary material (Section S2), we also demonstrate
each channel’s contribution in the multichannel subspace em-
bedding.

Finally, in Section V-E, we empirically show that the
proposed technique of concatenating the statistics at an in-
termediate level of processing is better than simple early or
late fusion applied the baseline models adopted as such from
speaker recognition literature.

C. Significance of combining embeddings from modified-i-
vector and modified-x-vector

This paper proposes a novel ix-vector system that concate-
nates the embeddings from modified-i-vector and modified-
x-vector systems. Across both the datasets, in Table IV the
ix-vector system is observed to perform better than other
subspace systems and the baseline systems. In Case-1 of
Table VIII, observe that for few tasks the modified-i-vector
system has given good performance and for the rest the
modified-x-vector has given good results. However, for all the
tasks, ix-vector provides better results than any of the indi-
vidual systems. Furthermore, for most of the results described
in Sections V-A to V-D, the same trend is observed. This
suggests that modified-i-vector and modified-x-vector capture
complementary information, which is evident in the ix-vector
system, where the performance is better than that of both i-
vector and x-vector based systems. The only exception to this
result is in the case when region-wise channels are chosen
(Figure 3).

D. Results on dataset 2 with 920 individuals
In Table IV, all the methods obtain accuracy only in the

range of 5%-35% for dataset 2. We believe there are two main
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factors for this drop in performance. Firstly, dataset 2 with 920
subjects is a much larger dataset with multi-session recordings
on which EEG person recognition is studied until now (around
100 subjects in Table I). Secondly, unlike dataset 1 or any
studies referred-to in Table I, dataset 2 was not collected in a
controlled and confined environment with a predefined set of
standard EEG biometrics elicitation protocols on 100% healthy
subjects. As mentioned in Section III-B, we have tried to
remove recordings with abnormalities or seizures. However,
the annotation used to filter the dataset were algorithmically
generated [48] and hence are not expected to be 100%
accurate. Abnormalities such as seizure would be present in
only a few sessions, and such signatures would have made the
dataset more challenging. Contrasting this, if the abnormality
is consistently present in all the sessions, this would have
positively enhanced biometric results. Non-standardized tasks
and data collecting environments, and varying EEG acquisition
devices further added challenges to biometric performance in
the dataset. Owing to the factors mentioned above, finding a
subspace that disentangles the intrinsic subject characteristics
from the EEG signal in this dataset is hard.

Further experiments are required to decode the extent to
which the clinical nature and a large number of subjects affects
EEG biometric performance in dataset 2. The performance of
EEG biometrics on a large number of subjects with multiple
session recording is an unexplored area, mainly owing to the
difficulty involved in data collection (unlike face or voice
recognition where > 1000 individuals or more is typically
used). The given result on dataset 2 with 920 subjects further
motivates the research of EEG biometrics with a large number
of subjects and multiple sessions of recording, although the
clinical nature influences the results. In the supplementary
material (Section S3), we show further analysis on this dataset
using 100 and 500 subjects.

E. Limitations

1) Dataset 1: The limitation of dataset 1 is that it does
not have data from all or an equal number of subjects
performing all the tasks. Hence, it is not possible to analyze the
performance from Table VIII across tasks and compare them.
However, dataset 1 has been collected using a wide range of
tasks, making it a suitable candidate for task-independent EEG
analysis.

2) Dataset 2: Dataset 2 has clinical nature due to the
demographics of the involved patients and the usage of non-
standardized tasks with clinical objectives. Further studies
are required to carefully analyze the effect and the extent
of clinical nature in this dataset and how it affects EEG
biometrics. This paper uses dataset 2 only as a contrastive
dataset to compare the performance of proposed approaches
against the baseline systems (see Section VI-D).

F. Future research directions

1) Task-independent EEG biometrics: With different elic-
itation protocols being a primary focus in the literature, all
the results discussed in this paper question the need for spe-
cific (constrained) elicitation protocols for studying biometric

signatures. These results show that there can be significant
person-specific signatures in any EEG being collected; and
hence suggest the usage of task-independent EEG biometrics
as a baseline for studying task-dependent EEG biometrics.

2) Proposed subspace: The person-specific signatures can
negatively affect generalization across individuals when EEG
is being used for building task rich Brain-Computer Interfaces
(BCI). In the speech processing literature, while training mod-
els for speech recognition, speaker information is suppressed
by various speaker normalization techniques. Since biometric
information is always present in EEG, similar methods need to
be developed to scale BCIs across individuals. The subspace
systems proposed in this paper gives a single vector represen-
tation of biometric information present in the signal. While
building BCIs, the subject-specific vectors can also be used as
features for normalizing variance across subjects.

3) Improving results on unseen tasks: In Table IX of
Section V-B, the performance of models were observed to
drop significantly when very different conditions are used in
training and testing. Similarly, for few tasks in Table VIII, the
result dropped considerably for few tasks unseen during train-
ing. In addition to this, in the supplementary material (Section
S4), we present additional performance comparisons using
baseline models for unseen tasks. The other baseline methods
were also observed to have a similar drop in performances.
Despite the drop in performance, it should be noted that these
results are much better than a random classifier indicative of
task-independent biometric signatures. Benchmarking results
on such hard inter-task testing and improving these results
using better datasets and models are important future works.

4) Improving results on unseen users: Table X of Sec-
tion V-C tests the ability of the proposed subspace embeddings
to scale for unseen users during training. In the supplementary
material (Section S5), we also report the results on unseen
task for other compatible baseline models. For individuals
unseen during training, the proposed model was shown to work
despite a considerable drop in performance. This experiment
is inspired by speaker verification literature [7, 8], where
embedding extracted from a subspace trained discriminatively
using a large number of users (� 1000) is the state-of-the-
art for open-set-verification. The preliminary results given in
Section V-C show that the proposed models have the potential
to be used in open-set verification by extracting embeddings
from users unseen during model training. However, testing and
improving open-set verification results using strong baselines
and large datasets is an important future work for these models
to be used for large-scale EEG biometric verification similar
to speaker recognition.

5) Better feature selection and channel sampling: All re-
sults in the manuscript were reported using PSD features.
Exploring better features for task-independent EEG biometric
is an interesting future work.

In Section V-D, various simple channel sub-sampling strate-
gies are explored using a 128 channels dataset. Section S6 in
the supplementary material reports other baseline results for
all channel sub-sampling strategies discussed in Section V-D.
However, these channel sub-subsampling techniques are em-
pirical. In this regard, in the supplementary material (Section
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S7), we attempted a simple systematic way of sampling
the channels by their performance; however, the obtained
performances were not significantly greater than the results
reported in Section V-D. Using a dataset with 128 channels,
sampling channels systematically for every individual or a set
of individuals using a compatible recognition system is also
an interesting future direction for research.

VII. CONCLUSION

The paper builds upon state-of-the-art text-independent
speaker recognition techniques, namely the i-vector and x-
vector system, for recognizing individuals from multi-channel
EEG. It proposes a novel system that combines adapted
versions of i-vector and x-vector. The proposed methods
are shown to give state-of-the-art results by testing against
various baseline systems on two large datasets across tasks and
sessions. The proposed approach is shown to reliably encode
person-specific signatures into a single vector using just four
channels and a simple cosine similarity scoring.

The proposed subspaces are also used to offer empirical
evidence for the presence of task-independent person-specific
signatures in EEG using different tasks/conditions for training
and testing at various levels. The results discussed in this
paper question the need for the use of constrained elicitation
protocols for EEG biometrics and suggest task-independent
settings to be used as a baseline for studying task-dependent
EEG biometrics.
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[7] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet,
“Front-End Factor Analysis for Speaker Verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, May 2011.

[8] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,”
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5329–5333, 2018.

[9] Mari Ganesh Kumar, MS Saranya, Shrikanth Narayanan, Mriganka Sur, and Hema A
Murthy, “Subspace techniques for task-independent eeg person identification,” in
2019 41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE, 2019, pp. 4545–4548.

[10] Iyad Obeid and Joseph Picone, “The Temple University Hospital EEG Data
Corpus,” Frontiers in Neuroscience, vol. 10, no. May, pp. 196, 2016.

[11] Maria V. Ruiz-Blondet, Zhanpeng Jin, and Sarah Laszlo, “Permanence of the
cerebre brain biometric protocol,” Pattern Recognition Letters, vol. 95, pp. 37 – 43,
2017.

[12] Emanuele Maiorana and Patrizio Campisi, “Longitudinal Evaluation of EEG-Based
Biometric Recognition,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 5, pp. 1123–1138, May 2018.
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